انواع لاستیکها
1- لاستیکهای طبیعی (natural rubber)
2- لاستیکهای مصنوعی (synthetic rubber)
( لاستیک طبیعی )
گیاهان بیشماری از جمله قاصدک ، گوایل ، گل روبینه و توت آمریکایی به عنوان منبع لاستیک پیشنهاد شده بودند. ولی هیچ یک توفیق درخت شیرابه ساز هوآ برزیلینسیس و همچنین صمغ درخت ساپوریلا و درخت بالاتا را نداشته است. لاستیک طبیعی عمدتا در کشتزارهای مالزی ، اندونزی ، لیبریا و همساگیانثی تولید شد، احتمالا به این علت که آنها مشکل بیماریهای قارچی و حشرات را که کشتزاهای بومی در آمریکا را تهدید میکرد نداشتند. حدود 7 سال زمان لازم است تا این درختان به سن باروری برسند و پس از آن به مدت چند سال بار میدهند. بهره باردهی در طول جنگ دوم افزایش یافت و در حال حاضر از کشف انواع اصلاح شده درخت ، بهرهای بیش از 3000 کیلوگرم در هکتار (در سال) بدست میآید.
ساختار لاستیک طبیعی
لاستیک طبیعی یا کائوچو ، سیس- 1 ، 4- پلی ایزوپرن است و مولکولهای آن بر اثر کشش ، بلوری میشوند، بدین ترتیب شکل مطلوبی از تقویت حاصل میشود. به عنوان پیش نیاز ساختاری ، مولکولهای لاستیکهای طبیعی و سنتزی باید طویل باشند. خاصیت مشخصه کشیدگی برگشتپذیر به دلیل ترتیب اتفاقی و کلافی زنجیرهای بلند بسپاری است.
بر اثر کشش ، زنجیرها بهم میخورند ولی مثل یک فلز ، پس از رها کردن تنش به شکل کلافی خود بر می گردند. لاستیک طبیعی 6 تا 8 درصد مواد غیر پلاستیکی دارد و در برابر گرما اندوزی مقاومت زیادی نشان میدهد.
روش تهیه لاستیک طبیعی
برای
بدست آوردن شیرابه ، پوست درخت را طوری برمیدارند که مایع در فنجانهای کوچکی جمع
شود، فنجانها باید مرتبا جمعآوری شوند تا از گندیدگی یا آلودگی شیرابه جلوگیری
شود. پس از آن شیرابه به محل جمع آوری برده میشود و در آنجا پس از صاف شدن با
افزودن آمونیاک محافظت میشود. لاستیک از طریق فرآیندی موسوم به انعقاد جدا میشود.
این کار با افزودن اسیدها یا نمکهای مختلف انجام می گیرد. در طی این عمل ، لاستیک
به شکل یک توده سفید خمیری از مایع جدا می شود، و سپس از آن با استفاده از غلتک
ورقهای و در نهایت خشک می گردد.
روش جدیدتر این است که با استفاده تیغههای دوار یا اعمال برش بین دو غلتکی که با
سرعت متفاوت می چرخند ، شیرابه منعقد شده را به دانه تبدیل میکنند. دانهها سپس
به مدت چند ساعت در خشک کنهای مکانیکی خشک میشوند، این عمل در روش قدیمی که از
هوا یا دود چوب برای خشک کردن استفاده می شد چندین روز به طول میانجامید. به هر
صورت ورقه یا دانه خشک شده متراکم و از آن مدلهایی به وزن 33 کیلوگرم می سازند.
مقداری از لاستیک طبیعی بصورت شیرابه به بازار عرضه میشود. پیش از آنکه لاستیک را
بتوان با انواع افزودنیهای لازم آمیزه کاری مثل دوده (به عنوان پرکن) گوگرد یا
ترکیبات گوگردی ، تسریع کننده و ولکانش ، ضد اکسنده محافظ و روغن بر روی همان
غلتکها یا مخلوطکن ممکن است به ارتفاع یک ساختمان دو طبقه باشد و در عین حال تنها
مقدار کمی لاستیک را در یک زمان میتوانند عمل آورند. یک نمونه مخلوطکن ممکن است
به ارتفاع یک ساختمان دو طبقه باشد و در عین حال تنها بستههای 250 کیلوگرمی را
جوابگو باشد. پس از اختلاط ، لاستیک با روزن رانی یا قالب گیری به شکل محصول
دلخواه در می آید و بعد پخت می شود. و ولکانشی به یک پلیمر سخت شبکهای میانجامد که با گرمادهی مجدد نرم و با ذوب
نمیشود.
( لاستیک مصنوعی )
دو لاستیک صناعی که برای نخستین بار با موفقیت تجاری همراه بودند، یعنی نئوپرن و تیوکول، هر دو برحسب تصادف تولید شدند. کشف نئوپرن شبه بخت یارانه و کشف تیوکول بخت یارانه بود.
شیمیدانان با حرارت دادن لاستیک در شرایط تنظیم شده و شناسایی قطعاتی که از تجزیه آن به دست می آمد، مطالبی در باره ساختار مولکولی لاستیک آموختند. یکی از این قطعات ایزوپرن بود، که ترکیبی پنج کربنی با دو پیوند مضاعف است. در سال 1920 هرمان استاودینگر مقاله معروفی نوشت که در آن برای ساختار فراورده های طبیعی مهمی نظیر لاستیک، سلولوز، و پروتئین ها، و نیز برخی مواد صناعی که ویژگی های مشابهی داشتند، توجیهی ارائه شده بود. به نظر وی این مواد، که ظاهراً با ترکیبات آلی ساده تر تفاوت مرموزی داشتند، پلیمر بودند ( این کلمه از دو واژه یونانی پلی به معنای چندین و مروس به معنای پاره یا قطعه مشتق شده است). پلیمرها از مولکول های عظیمی تشکیل شده اند که در آنها واحدهای تکرارشونده با همان انواعی از پیوندهای شیمیای که در ترکیبات ساده تر دیده می شوند به هم متصل شده اند. به عنوان نمونه فرمول مولکول لاستیک چنین پیشنهاد شد:
فرض شد که تعداد زیادی واحد ایزوپرن " منومر" ( لغتاً به معنای " یک پاره" ) در درخت کائوچو طی واکنش های زیست شناختی به یکدیگر متصل می شوند و مولکول های پلیمری بزرگ لاستیک به دست می آید.
پس از آنکه این فرمول برای لاستیک طبیعی پیشنهاد شد، تلاشهای زیادی برای تهیه نوعی لاستیک صناعی که ساختار مولکول و خاصیت ارتجاعی لاستیک به دست آمده از درخت را داشته باشد انجام شد. ایزوپرن در معرض کاتالیزورهای مختلفی قرار گرفت تا معلوم شود آیا به شکل چیزی مثل لاستیک پلیمریزه می شود یا نه. این تلاش ها به اندازه ای موفقیت آمیز بودند که مشخص شد نظریه استاد و دینگر صحیح است، اما جنبه های جزئیتر ساختار مولکولی ناشناخته بودند، تا سرانجام کارل زیگلر در 1953 کاتالیزورهای تنظیم کننده آرایش فضایی را کشف کرد ( در فصل 26 در باره این اکتشاف بخت یارانه توضیح داده شده است). معلوم شد که در لاستیک طبیعی آرایش واحدهای منومر ایزوپرن " تمام – سیس" است؛ این آرایش را می شد با کاتالیزورهای جدید در لاستیک صناعی تقلید کرد، در حالی که کاتالیزورهای قبلی باعث ایجاد آرایش اتفاقی واحدهای سیس و ترانس می شدند. تنها از این موقع بود که تولید لاستیک صناعی مقدور گردید، به نحوی که تقریباً نمی شد فرقی بین آن و همتای طبیعی اش گذاشت. امروز مهمترین عامل تعیین کننده استفاده از لاستیک طبیعی یا صناعی در ساخت تایر و تولیدات دیگر قیمت نفت است، که ماده اولیه لاستیک صناعی است.
دکتر و. س. کلکات، که در آزمایشگاه جکسون شرکت دوپون پژوهش می کرد، متوجه تحقیقاتی که پدر نیولند در دانشگاه نوتردام انجام داده بود شد. نیولند کشیشی کاتولیک، رئیس نوتردام و شیمیدان بود. او با انتشار نتایج تحقیقاتش نشان داد که استیلن، هیدروکربنی که فرمولH2 C2 را دارد، تحت شرایطی یک یا دوبار به خود اضافه می شود، و وینیل استیلن و دی وینیل استیلن، که مولکول هایی با فرمولC6H6,C4H4 هستند، ایجاد می کند. به عقیده کلکات ممکن بود این دیمرها و تریمرها آن قدر به واحد سازنده لاستیک طبیعی، یا ایزوپرن، شباهت داشته باشند که بتوان از آنها برای تهیه لاستیک صناعی استفاده کرد. عده ای از شیمیدانان زیر دست خود را در دوپون به این کار مشغول ساخت، اما موفقیتی نصیب شان نشد، بنابر این نزد والاس کارودرز رفت، که در ایستگاه آزمایشی دوپون که محل انجام مهمترین پژوهش ها در زمینه پلیمرها بود مقام سرگروهی داشت.
کارودرز به مسئله علاقه مند شد. از شیمیدانی به نام آرنولد کالینز که زیر نظرش کار می کرد خواست تا نمونه ای از مخلوط خامی را که به روش نیولند از استیلن به دست می آمد تخلیص کند. وقتی کالینز این کار را انجام داد توانست مقدار ناچیزی مایع جدا کند که به نظر می رسید نه وینیل استیلن باشد نه دی وینیل استیلن، و نیولند نیز آن را شرح نداده بود. اما آن را دور نریخت، بلکه در مدت تعطیلات آخر هفته بر میز کارش در کناری گذاشت. وقتی دوشنبه برگشت متوجه شد که مایع سفت شده است، و وقتی آنرا بررسی کرد، دریافت که حالتی لاستیکی پیدا کرده است، تا حدی که وقتی آن را روی میزش می انداخت، برمی گشت.
شاید بگویید این هیچ تصادف نبود، بلکه همان چیزی بود که کلکات انتظارش را می کشید یا حتی پیش بینی می کرد. اما وقتی این جامد لاستیکی مورد تجزیه و تحلیل قرار گرفت، معلوم شد شکل پلیمری هیدروکربن استیلن نیست، بلکه در آن کلر وجود دارد، که کاملاً غیر مترقبه بود. ظاهراً این کلر ناشی از اسید کلریدریک (HCI) بود که در روش نیولند برای به دست آوردن دیمر و تریمر استیلن استفاده می شد، و به وینیل استیلن اضافه شده بود. محصولی که از این اضافه شدن به دست آمد به دلیل شباهتش به ایزوپرن، کلروپرن نام گرفت. تنها تفاوتی که وجود داشت این بود که در مولکول منومر آن، اتم کلر به جای یک گروه متیل ( واحدی مولکولی متشکل از یک اتم کربن متصل به سه اتم هیدروژن، یعنی CH3) قرار گرفته بود. این پلیمر یزاسیون خود به خودی کلروپرن در طی تعطیلات آخر هفته بر میزکالینز ایجاد جامد لاستیک مانندی کرده بود که شرکت دوپون نئوپرن نامید.
معلوم شد که این لاستیک صناعی جدید بر خلاف لاستیک طبیعی مقاومت زیادی در برابر نفت، بنزین واوزون دارد. همین ویژگی ها باعث شد دوپون آن را با وجود گرانتر بودنش در مقایسه با لاستیک طبیعی، در سال 1930 تولید و به بازار عرض کند. نئوپرن هنوز هم مفید و ارزشمند است؛ دوامش در کار بردهای سنگینی همچون شلنگهای صنعتی، پوشش کف کفش، درزگیری دور شیشه ، تسمه های انتقال نیروهای مکانیکی سنگین و پوشش کابل های برق، اثبات شده است. از کاربردهای تازه و جالب آن، استفاده از نئوپرن به عنوان ماده چسباننده کمربندهای چرمی دو لایه است: با این ماده می توان دو نوار چرمی سیاه و قهوه ای را بدون دوزندگی بطور دایمی به هم چسباند و کمربندهای دو رنگ قابل تعویض تولید کرد.
در سال 1924 ج . س . پاتریک تصمیم گرفت از مقادیر زیاد اتیلن و گاز کلر که محصول جانبی فرایندهای صنعتی بود، ماده مفیدی تهیه کند. از قبل می دانستندکه از ترکیب این دو ماده دی کلرید اتیلن به دست می آید؛ پاتریک مشغول آزمایش بر روی واکنش مواد مختلف با دی کلرید اتیلن بود، به این امید که اتیلن گلیکول، که محصول قابل فروشی بود، تولید شود. یکی از موادی که امتحان کرد پلی سولفید سدیم بود. واکنش این ماده با دی کلرید اتیلن موجب تولید مایع گلیکولی که به دنبال آن بود نشد، بلکه ماده ای نیمه جامد و لاستیکی به دست آمد. پاتریک بی درنگ به اهمیت بالقوه این جسم لاستیکی پیش بینی نشده پی برد، و طرح پژوهشی گسترده ای را آغاز کرد که پس از مدت کوتاهی به در خواست ثبت امتیاز و تاسیس شرکتی برای تولید این لاستیک صناعی جدید منجر شد.
شرکت شیمیایی تیوکول، که پاتریک رئیس آن بود، تیوکول A را در سال 1929 به بازار فرستاد. ساختار مولکولی آن با لاستیک طبیعی کاملاً تفاوت داشت، ولی در عین حال ارتجاعی بود. نسبت به لاستیک طبیعی یک برتری داشت و آن اینکه مثل نئوپرن در برابر مواد نفتی مقاوم بود. اما چندی نگذشت که عیب بزرگ آن معلوم شد: بوی گندی داشت!
شرکت تیوکول و دیگران لاستیک های پلی سولفید متعددی تولید کردند. در به کار گرفتن آنها از مقاومتشان در مقابل فراورده های نفتی و ویژگی های عایقکاری خوبشان نظیر درزگرفتن دور شیشه های اتومبیل و پوشاندن مخازن سوختی که در بالهای هواپیماها وجود دارند استفاده می شد. چون لاستیک های تیوکول را می شد در دمای پایین تثبیت کرد، مدتی از آنها به عنوان چسباننده و جزئی از سوخت های جامد موشک برای پرتاب ماهواره ها و سفینه های فضایی به مدار استفاده می شد.در سال 1982 شرکت نمک مورتون، شرکت تیوکول را خرید و تشکیل شرکت مورتون تیوکول را داد؛ هر دو شرکت قبل از ادغام در یکدیگر مواد شیمیایی تخصصی تولید کرده بودند و پس از ادغام نیز به کار خود ادامه دادند. شرکت مورتون تیوکول که از پیمانکاران عمده در ساخت شاتل فضایی نا فرجام چلنجر بود، دچار بدنامی زیادی شد. اما حلقه O شکلی که انفجار سفینه فضایی مزبور را به آن نسبت می دادند از لاستیک های صناعی پلی سولفید تیوکول نبود، بلکه آن را از ویتون، نوعی پلیمر ارتجاعی که از لحاظ شیمیایی بیشتر به تفلون شباهت دارد، تهیه کرده بودند.