وبلاگ مهندسی پلیمر ۸۷

به وبلاگ تخصصی بچه های مهندسی پلیمر 87 دانشگاه امیدیه خوش آمدید.

وبلاگ مهندسی پلیمر ۸۷

به وبلاگ تخصصی بچه های مهندسی پلیمر 87 دانشگاه امیدیه خوش آمدید.

گزارش کار اندازه گیری یون کلرید در آب (ولهارد متد )

وسایل :
پیپت حجم سنجی ، ارلن ، استوانه مدرج ، بشر ، بورت ، قیف ، پایه ، گیره ، پی ست ، کاغذ صافی
مواد :
معرف آمونیوم فریک سولفات  ، اسید نیتریک غلیظ ،نقره نیترات ،محلول 0.05 مولار آمونیوم تیو سیانات ،یک نمونه از آب شهر
مقدمه و تئوری:
تیتراسیونهای رسوبی با نقره نیترات

نقره نیترات یک واکنشگر حجم سنجی و پر مصرف است.این واکنشگر برای تعین آنیونهایی که با نقره ایجاد رسوب می کنند به کار می رود.از میان این گونه ها می توان به هالیدها,انواع آنیونهای دوظرفیتی,مرکاپتانها و بعضی از اسیدهای چرب اشاره کرد.روشهای تیترسنجی که با نقره نیترات انجام می شوند گاهی روشهای آرژانتومتری نامیده می شوند.
   
انواع منحنیهای تیتراسیون

در روشهای تیترسنجی با دو نوع کلی از منحنیهای تیتراسیون بر خورد می کنیم.در نوع نخست,که منحنی s شکل نام دارد,بررسیهای اصلی به ناحیه ی کوچکی در اطراف نقطه ی هم ارزی محدود می شود. یک منحنی s شکل در شکل 1-9 الف نشان داده شده است. در نوع دوم , که منحنی پاره خطی نام دارد اندازه گیریها در هر دو طرف  نقطه ی هم ارزی  و به اندازه ی کافی  دور از آن انجام می شود. از اندازه گیری در نزدیکی نقطه ی هم ارزی پرهیز می شود. یک نمونه از منحنی پاره خطی در شکل 1-9 ب نشان داده شده است. منحنی s شکل سرعت و سهولت را در اختیار استفاده کننده قرار می دهد. در واکنشهایی که تنها در حضور مقدار قابل توجهی از واکنشگر اضافی یا آنالیت کامل می شود استفاده از منحنی پاره خطی سودمند است.

منحنیهای تیتراسیون برای روشهای نقره سنجی

تهیه ی منحنی برای تیتراسیون نقره سنجی به سه نوع محاسبه نیاز دارد که هر یک برای مرحله ای ویژه از تیتراسیون به کار برده می شود:(1) نقاط پیش هم ارزی,(2) نقاط هم ارزی و(3) نقاط پس هم ارزی.
در مرحله ی پیش هم ارزی, غلظت آنالیت از غلظت اولیه ی آن و داده های حجم سنجی محاسبه می شود. در نقطه ی هم ارزی یون نقره و یون آنالیت در نسبتهای استوکیومتری وجود دارند و غلظت یون نقره مستقیم از روی ثابت حاصلضرب انحلال پذیری استخراج می شود. در مرحله ی پس هم ارزی , غلظت تجزیه ای مازاد نقره نیترات محاسبه می شود و فرض می شود که این مقدار با غلظت تعادلی برابر باشد.
نقره
نقره ، یکی از عناصر شیمیایی، با نشانه Ag ، دارای عدد اتمی 47 ، وزن اتمی 107.8682 و در گروه یک فرعی (IB) جدول تناوبی قرار گرفته است. نقره فلزی سفید مایل به خاکستری و براق است و از نظر شیمیایی یکی از فلزات سنگین و از جمله فلزات نجیب و از نظر تجارتی عنصری گرانبها تلقی می‌گردد. نقره یکی از عناصری است که از گذشته های دور و دورانهای باستان بعنوان یک فلز شناخته شده و مورد استفاده واقع میشده و از آن در کتابهای فراعنه مصری ، که قدمت این کتابها به حدود 3600 سال قبل از میلاد مسیح بالغ می‌گردد، بعنوان فلزی که از نظر ارزش دارای {5}{2}frac\ ارزش طلا است، یاد شده است. از نقره ، 25 ایزوتوپ رادیواکتیو شناخته شده اند که دارای اجرام اتمی 102 الی 117 می‌باشند. نقره معمولی از دو ایزوتوپ با جرمهای 107 و 109 تشکیل شده است.
 خصوصیات فلز نقره
نقره خالص فلزی براق و نسبتا نرم است که تا اندازه ای سخت تر از طلاست. زمانیکه این فلز پرداخت شود، دارای درخشندگی می‌شود و می‌تواند 95% از نور تابیده به خود را بازتاب نماید. این عنصر در میان کلیه فلزات ، مقام بهترین رسانا در زمینه گرما و الکتریسیته را دارا است و در زمینه قدرت چکش خواری و مفتول شوندگی دارای مرتبه دوم پس از طلا است. چگالی نقره 10.5 برابر آب است، بصورتیکه یک متر مکعب از آن دارای وزن 10500 کیلوگرم می‌باشد. نقره در 961 درجه سانتیگراد ذوب شده و در حدود 2200 درجه سانتیگراد می‌جوشد.
طلا و نقره مانند محلولهای واقعی می‌توانند در هر نسبتی با یکدیگر مخلوط شده و آلیاژ تشکیل دهند. کیفیت نقره و یا بعبارت بهتر عیار آن بر حسب تعداد قسمت نقره خالص در 1000 قسمت مخلوط فلزات بیان می‌گردد و بطور معمول نقره تجاری دارای عیار 999 است.
خواص شیمیایی نقره
اگرچه نقره از نظر شیمیایی در میان فلزات نجیب فلزی بسیار واکنش پذیر تلقی می‌گردد، لکن باید توجه داشت که در مقایسه با سایر عناصر از مرتبه واکنش پذیری قابل ملاحظه‌ای برخوردار نمی‌باشد. این عنصر به آسانی اکسیده شدن آهن اکسید نمی‌شود، لکن با گوگرد و هیدروژن سولفید واکنش داشته و تشکیل همان تیرگی آشنا را می‌دهد که در نقره‌هایتان ملاحظه می‌کنید.
برای رفع این نقیصه می‌توان آبکاری نقره را با کمک رودیم به انجام رسانیده و از وقوع تیرگی مورد نظر پیشگیری نمود همچنین با استفاده از کرم (Cream) یا پولیش نقره می‌توان لایه تیره بسیار نازکی را که نقره در ترکیب با گوگرد بوجود آورده است را زدوده و آن را مجددا براق نمود. از طرف دیگر این تیرگی را می‌توان از نظر شیمیایی بوسیله حرارت دادن ظرف مورد نظر در محلوا رقیقی از کلرید سدیم و کربنات هیدروژن سدیم یا قرار دادن قسمت تیره در تماس با فلزی فعالتر مانند آلومینیوم که می‌تواند با گوگرد ترکیب شود و مجددا فلز را به حالت اولیه برگرداند، از بین برد.
نقره نمی‌تواند با اسیدهای غیر اکسیدکننده مانند اسیدهای کلریدریک و سولفوریک یا بازهای قوی مانند هیدروکسید سدیم واکنش نماید، لکن اسیدهای اکسنده مانند اسید نیتریک یا اسید سولفوریک غلیظ آن را در خود حل کرده و یون یک مثبت نقره (+ Ag) را تشکیل می‌دهند. این یون که در کلیه ترکیبات ساده و محلول نقره وجود دارد، تقریبا بصورت ساده ای با استفاده از عوامل احیا کننده آلی مانند آنچه در آئینه های نقره ای ملاحظه می‌شود، به فلز آزاد احیا می‌گردد. برای آبکاری نقره لازم است یونهای کمپلکس نقره احیا شود. یون (+Ag)بی‌رنگ است، لکن تعدادی از ترکیبات نقره بدلیل نفوذ سایر اجزای تشکیل دهنده ساختمانی رنگینند. باید توجه داشت که اکسیژن درحد حیرت انگیزی در نقطه ذوب نقره به میزان 20 قسمت حجمی از اکسیژن در یک قسمت حجمی نقره حل می‌شود. پس از سرد کردن مایع مورد نظر نیز اکسیژن به میزان 75% قسمت (از نظر حجمی) در نقره باقی می‌ماند.
تجزیه و شناسایی
محلولهای حاوی یون نقره را می‌توان به آسانی تشکیل رسوب کلرید نقره بوسیله افزایش اسید کلریدریک ، شناسایی کرد. این رسوب را می‌توان از رسوبهای سرب و جیوه یک ظرفیتی ، بوسیله قدرت حل شدن آن درهنگام افزودن هیدروکسید آمونیوم اضافی و ایجاد رسوب مجدد با افزودن اسید نیتریک متمایز نمود. مضافا تجزیه وزنی بوسیله کلرید نقره یا برمید نقره که به آسانی قابل رسوب دادن ، خشک کردن و توزین می‌باشند، میسر می‌باشد. همچنین می‌توان یون نقره را بوسیله عمل الکترولیز به نقره فلزی احیا و بدین روش توزین نمود. از محلول تیوسیانات پتاسیم استاندارد شده نیز می‌توان برای تجزیه حجمی نقره استفاده کرد.

کمپلکس های نقره
نقره یک ظرفیتی تعداد زیادی از ترکیبات پایدار کوئوردیناسیونی تشکیل می‌دهد. این ترکیبات اغلب دو کوئوردینانسی بوده، دارای دو گروه یونی یا مولکولی پیوسته به یک یون مرکزیAg مانند Ag(CN)_2 می‌باشند. کمپلکسهای کوئوردیناسی مانند -AgCl_3]
2] نیز شناخته شده‌اند و احتمالا کمپلکسهای چهار کوئوردیناسی مانند-AgCl_4]
3] در محلولها رخ می‌دهد. نقره دو ظرفیتی می‌تواند در برابر تجزیه ، بوسیله تشکیل یون +Ag 2 با استفاده از ترکیبات آلی مانند ارتو_ فنانترولین ، پیریدین و alpha' ،\alpha\ _ دی پیریدیل پایدار شود. یون نقره سه ظرفیتی (+Ag3) نیز با استفاده از کمپلکس شدن به وسیله اتیلن دی بی گوایند پایدار می‌شود. از طرف دیگر کلیه فلزات ضرب سکه ، یعنی مس ، نقره و طلا به آسانی با موادیکه اتمهای نیتروژن ، گوگرد یا هالوژن برای اتصال با آنها تدارک می‌کنند، کمپلکس می‌شوند (در مقایسه با موادیکه تدارک اکسیژن می‌نمایند). بعنوان مثال کمپلکسهای نقره با یون هیدروکسید (در مقایسه با کمپلکسهای هیدروکسیدروی که کوئوردینانس‌شونده خوبی با اکسیژن هستند) خیلی پایدار نیستند، بنابراین اکسید نقره در محلولهای قوی هیدروکسید سدیم فقط به میزان کمی حل می شود، در حالیکه هیدروکسید روی با توجه به کوئوردیناسیون شدنش با هیدروکسید ، در آن حل می‌شود.


نقطه ی آغاز

در ابتدا محلول نسبت به ag+,m 0,000  است و pag نا معین است.پس از افزایش 500ml از واکنشگر غلظت یون برمید به دلیل تشکیل رسوب و رقیق شدن کاهش می یابد. پس غلظت تجزیه ای NaBr عبارت است از:
 تعداد میلی مولNaBr پس از افزایش AgNo3 =cNaBr                 
                        حجم کل محلول     
تعداد میلی مولAgNO3افزوده شده - تعداد میلی مولNaBrاولیه=
                      حجم کل محلول

M)001000*ML500)-(5000ML*000500M)=
ML+500ML                  5000       
Mmol-00500)=364*10^-302500)                 
              mL              5500   


جمله ی نخست در صورت کسرهای این معادله ها تعداد میلی مولهای NaBr اولیه در نمونه و جمله ی دوم تعداد میلی مولهای AgNo3 افزوده شده را , با تعداد میلی مولهای Br- واکنش داده برابر است. در مخرج کسرهای رقیق شدن محلول در نتیجه ی افزایش واکنشگر در نظر گرفته می شود.
هم NaBr واکنش نداده و هم AgBr کم محلول در غلظت گونه ی یون برمید شرکت می کند. پس, غلظت تعادلی  Br- به اندازه ی Br- حاصل از انحلال پذیری مولی رسوب بزرگتر از غلظت تجزیه ای NaBr است:

                                               3-^10*3,64=[-Br]

مشارکت نقره برمید  در غلظت تعادلی یون برمید برابر [Ag+]   است , زیرا از این ترکیب به ازای هر یون برمید , یک یون نقره ایجاد می شود .از این جمله , بجز در مواردی که غلظت NaBr خیلی کوچک است, می توان چشمپوشی کرد.یعنی ,     3-^10*3,64>>[Ag+]  , و بنابر این            3-^10*64, cNaBr = 3 =Br-                               
غلظت یون نقره از رابطه ی زیر نتیجه می شود:
= Ksp[Ag+]
[Br-]

برای بدست آوردن PAg, از دو طرف این معادله لگاریتم منفی می گیریم. پس

             ([-Br]log-) log Ksp -- =[Ag+]-log

با توجه به تعریف تابع p-, می توان نوشت:

pAg = pKsp – pBr                                  
= -log 5.2*10^-13 – pBr                        
= 12.28 – (-log3.64*10^-3)                  
=12.28 – 2.44 = 9.84                          
این رابطه برای هر محلول حاوی یونهای نقره و برمید که در تماس با نقره برمید جامد باشد به کار می رود . توجه کنید که pAg محاسبه شده با 1.4*10^-10  = [Ag+] مرتبط است و در واقع ,همان گونه که در ابتدا فرض کردیم , 3.64*10^-3 بسیار کوچکتر است.

نقاط دیگر در ناحیه ی پیش از هم ارز شیمیایی را می توان  به همین روش بدست آورد. داده ها برای تعدادی از این نقاط در ستون 3 جدول 9_2 یافت می شوند.                

نقطه ی هم ارزی
در نقطه ی هم ارزی , NaBr  و AgNo3  هیچ کدام به مقدار اضافی وجود ندارد و بنابراین غلظت یون نقره و برمید باید برابر باشد. با جایگزینی این تساوی در عبارت حاصلضرب انحلال پذیری نتیجه می شود:

       7 -^10* 7.21 =-13-^10*05.2√ = [Br-] = [Ag+]
pAg = pBr = -log (7.21*10^-7)                    

بعد از افزایش 25.10 از واکنشگر اکنون محلول حاوی مقدار زیادی از AgNo3   است می توان نوشت:

تعداد میلی مول اولیه NaBr - تعداد کل میلی مولAgNo3  = cAgNo3
                                   حجم کل محلول
= (25.10ML * 00.1000M) – (50.00ML * 0.00500M)
ML                        (25.10+50.00)
                                           
                                               -5^10*1.33=
 
بنابر این غلظت تعادلی یون نقره عبارت است از:
33 * 10^-5.1 ≈ [Br-] +  5 -^10*1.33 = [Ag+]

در این معادله [Br-]    معیاری از غلظت Ag+ حاصل از انحلال پذیری جزئی AgBr است:
 که معمولا می توان از آن چشمپوشی کرد.        
                                                     پس
                                                                        pAg = -log(1.33*10^-5) = 4.876 = 4.88                     
سایر نقاط تعیین هویت منحنی تیتراسیون پس از نقطه ی هم ارزی را می توان به روش مشابه به دست آورد که در جدول 9-2 این داده ها یافت می شوند.

واحدهای بکار رفته در گزارش یون کلریدآب
معمولا بر حسب ppm یعنی mg/lit بیان می‌شود. علاوه بر این ، واحدهای آلمانی ، انگلیسی ، فرانسوی ، آمریکایی را نیز در بیان آن بکار می‌برند.
روش کار :
1- بشر را شسته و 50 میلی لیتر آب شهر را توسط استوانه مدرج در بشر میریزیم.
2-  20میلی لیتر محلول نقره نیترات 0.05 مولار توسط پیپت به آن اضافه می کنیم و حداقل 10 دقیقه آن را به هم بزنید .
3- بشر محتوی رسوب AgCl در یک ارلن کاملا تمیز صاف کنید و بشر را با پیست آب مقطر بشورید .
4- یک میلی لیتر اسید نیتریک غلیظ به آن اضافه کنید .
5- 3 میلی لیتر محلول معرف آهن III   Fe³̽  ) محلول آمونیوم فریک سولفات FeNH4(SO4)2 ) به ارلن اضافه کنید .محلول زرد رنگ میشود .
6- بورت را با محلو ل0.05 مولار آمونیوم تیو سیانات NH4SCN پر نموده هوا گیری کرده و ارلن را تا ظهور رنگ قرمز تیتر کنید حجم مصرفی را یادداشت کنید .
7- ־ppm Cl  بر حسب خود و کربناتی محاسبه و گزارش نمایید.
واکنش مرحله 2:
  Ag Cl → Ag͊   +   ־Cl
واکنش مرحله 6:
 
    → Ag SCN־Ag͊ + SCN
واکنش پایان تیتراسیون :
Fe³ ͊   +   SCN  →  FeSCN² ͊     
جدول حاصل از آزمایش:
حجم آمونیوم تیو سیانات مصرفی (ml )
12.8

نمونه محاسبات:

  (CM*VSCN)=mEq -   CM*VAg))
(0.05*20)  -  (0.05*12.8)=0.36

Ppm Cl=(mEq /50ml)*(35.5mgr/1mEq)*(1000ml/1Lit)=255.6
360=Ppmcl*(50/E)=ppmCl کربناتی


جدول حاصل از محاسبات:
ppmCl کربناتی ppmCl־ میلی اکی والان گرم Cl
360 255.6 0.36

نتیجه گیری: در این آزمایش با استفاده از نقره ، یون های کلرید در آب را رسوب داده و سپس با استفاده از آمونیوم تیو سیانات مقدار اضافی نقره را با تیتراسیون محاسبه نموده و از اختلاف آن دو مقدار Cl را محاسبه می نماییم و ppmCl  را بر حسب خود و کربناتی گزارش می نماییم.

منابع خطا: در اندازه گیری حجم های  دقیق مصرفی در لحظه و در تشخیص دقیق تغییر رنگ.

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد